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Policy synergies effectively contribute to the integrated management of air pollution and carbon emissions,
which is crucial for safeguarding ecosystem stability and public health. This study uses the causal network model
of Gaussian process regression to analyze the combined impacts of dynamic and static carbon emission reduction
and air quality policies on carbon emissions and air quality. The causal effects of policy measures and their
synergistic effects are also examined. The study results indicate: (1) There is significant geographical hetero-
geneity in the implementation of environmental policies and regional economic development, with the
economically developed eastern coastal regions adopting more stringent carbon emission and air pollution
control measures, while the western provinces adopt relatively lax environmental policies. (2) The synergistic
effect of carbon emission reduction policies and air quality policies exists, and the two types of static policies are
substitutable for managing carbon dioxide emissions and air pollution. (3) Policies’ forced effect exists, where
the exacerbation of environmental problems leads to the formation and implementation of policies. (4) The value
added by the secondary industry is a key motivation for forming carbon emission reduction policies and air
quality control policies. Additionally, the value added by the secondary industry directly impacts the incidence of
respiratory diseases (e.g., tuberculosis). Finally, dynamic and synergistic policy recommendations are proposed
based on the study’s findings.

In 2023, China’s carbon emissions reached 12.6 billion tonnes,
exceeding one-third of the global total (IEA, 2024). Excessive carbon

1. Introduction

The rapid development of China’s secondary industry has signifi-
cantly boosted economic growth. The value added by the secondary
industry increased by 84.2 percent in 2023 compared to 2013, with an
average annual growth rate of more than 6 percent (National Bureau of
Statistics of China, 2024). However, the secondary industry, character-
ized by energy-intensive and highly polluting sectors, has become a
major source of air pollutants (Yi et al., 2022). In 2022, 37.2 percent of
cities in China still had substandard air quality, ranking the country
160th out of 180 in terms of environmental performance (Xu et al.,
2024). PM2.5 has become the world’s fifth deadliest risk agent, causing
about three million deaths per year from air pollution-related diseases,
with China being particularly affected (Wei et al., 2021).

The large-scale expansion of the secondary industry has triggered
serious air pollution and exacerbated carbon emissions (Liu et al., 2020).

dioxide emissions are a major driver of global warming (Kilkis et al.,
2020) and have significant impacts on the economy, environment, and
food security, threatening human survival [879]. Currently, China, as the
world’s largest carbon emitter (Zhang and Yang, 2024), is committed to
achieving its "dual carbon" goals but continues to face many challenges
[1112].

The Chinese government has implemented several important policies
to address the dual pressures of reducing carbon emissions and miti-
gating air pollution (Sun et al., 2023). In 2012, environmental perfor-
mance was included in appraisals, and a national ambient air quality
monitoring network was established to incentivize local governments to
control air pollution (Lu et al., 2023). In 2013, the Air Pollution Pre-
vention and Control Action Plan was implemented to limit the emission
of air pollutants from the industrial sector (Zhang et al., 2019). In 2018,
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the Three-Year Action Plan to Win the Battle for a Blue Sky further called
for the reduction of air pollution (Xiao et al., 2021). Regarding carbon
emission reduction, the government enacted the Nationally Appropriate
Mitigation Actions (NAMAs) and the National Autonomous Contribution
Plan (NACP), setting mandatory energy and carbon intensity reduction
targets in various five-year plans (Liu et al., 2022). Additionally, the
carbon trading policy was piloted in Beijing, Tianjin, Shanghai,
Chonggqing, and other provinces and cities [18]. The national carbon
trading market was officially launched in 2021, and local governments
have introduced relevant carbon emission reduction policies and regu-
lations (Liu et al., 2020) in a concerted effort to alleviate China’s carbon
emission problems.

Due to the homologous nature of carbon emissions and air pollution
(Zheng et al., 2018), there is a close link between the two in terms of
governance strategies. Carbon emission reduction policy measures can
indirectly reduce air pollutant emissions, realizing the synergistic ben-
efits of carbon emission reduction and air quality improvement.
Adopting source control strategies, such as replacing fossil energy with
cleaner energy sources, improving industrial production processes, and
optimizing the industrial structure in air pollution control policy, can
also effectively reduce carbon emissions and form a synergistic effect
(Zhang et al., 2023b). In view of this, the Chinese government has begun
to focus on the synergistic management of air pollution and carbon
emissions. The "Implementation Plan for Synergistic Effectiveness of
Pollution Reduction and Carbon Emission Reduction" was issued in
2022, marking the substantive stage of promoting synergistic manage-
ment of environmental pollution reduction and carbon emission
reduction(Xian et al., 2024a).

The innovativeness of this study is mainly reflected in (1) classifying
air quality and carbon emission reduction policies into two categories:
static and dynamic policies, considering the interaction and synergistic
effects among policies, and incorporating respiratory-related disease
data to further analyze the policy influence mechanism, which provides
the theoretical basis for formulating more accurate and comprehensive
environmental policies. (2) Combining Gaussian process regression and
causal network models to effectively deal with nonlinearity and dy-
namic uncertainty, revealing the interaction and causal effects among
policies through network topology, and improving the explanatory
power and precision of the model, which provides a new methodological
path for evaluating and optimizing environmental policies.

The subsequent chapters of this study are arranged as follows: the
second part consists of a literature review on the study of carbon
emission and air pollution under industrial development, the role of
policies in carbon emission reduction and air quality, and the study of
the causal effect model. The third and fourth parts use the causal
network model, constructed via Gaussian process regression, to explore
the causal effects and the synergistic nature of policies related to carbon
emission reduction and air pollution. The fifth part presents the results
based on the theoretical model, discussing both the outcomes of the
model and their real-world implications. Part VI offers recommenda-
tions for the synergistic management of carbon emissions and air
pollution based on the conclusions.

2. Literature review

2.1. Study on carbon emissions and air pollution under industrial
development

Carbon emission and air pollution issues have been the focus of ac-
ademic research. The development of the secondary industry impacts
carbon emissions and PM2.5 concentrations [22723]. Air pollution not
only increases the environmental burden (You et al., 2024) but also
negatively affects human health (Huang et al., 2018). When exploring
the relationship between industrial development and carbon emissions,
studies usually focus on industrial agglomeration and transfer, techno-
logical progress, industrial structure upgrading, and the impact of
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industrial trade on regional carbon emissions.

The relationship between industrial agglomeration and carbon pro-
ductivity shows an inverted "U" shape, and technology plays a promi-
nent role at the inflection point (Liu and Zhang, 2021). In the long run,
industrial labor and capital agglomeration will increase carbon emis-
sions; industrial output agglomeration also significantly contributes to
regional carbon emissions, while industrial technology agglomeration
has a significant inhibitory effect on regional carbon emissions (Tang
etal., 2022). Luan et al. (2023) empirically found that industrial transfer
exacerbates inter-city carbon transfer (Luan et al., 2023). Pan et al.
(2024) found that circular economy agglomeration in urban
manufacturing effectively reduces carbon emissions at the city level
(Pan et al., 2024).

Xia et al. (2022) assessed the relationship of implied carbon emission
flows between industrial sectors in China and found significant carbon
leakage (Xia et al., 2022). Wang et al. (2022) studied the relationship
between participation in GVCs, industrial upgrading, and carbon emis-
sions in different countries. The results showed that the transformation
and upgrading of industrial structure when participating in GVCs miti-
gate carbon emissions in developing countries (Wang et al., 2022). Wang
et al., 2024b found that low carbon emissions in southern China come at
the expense of high trade-implied carbon emissions in the north and that
carbon emission intensity and bilateral trade-industry linkages are the
dominant factors of implied carbon emissions (Wang et al., 2024a).

Carbon dioxide mainly comes from industrial economic activities,
making industrial structure upgrading particularly important for carbon
emission reduction (Gu et al., 2022). Technological upgrading can
effectively correct the distorting effect of resource dependence on the
rationalization of industrial structure (Zheng et al., 2023). Zhao et al.
(2023) found that fiscal decentralization and industrial structure
upgrading inhibit carbon emissions (Zhao et al., 2023). In addition, the
digital economy and industrial intelligence reshape the industrial
structure, which in turn reduces carbon emissions-a fact confirmed by
research [36738].

In the study of the relationship between industrial development and
air pollution, Yan et al. (2021) confirmed the relationship between in-
dustrial structure, economic development, and PM2.5. (Yan et al.,
2021). Wang et al. (2021) found that optimizing industrial structure
significantly reduces haze in Western China while improving energy
efficiency is more significant in the east (Wang et al., 2021). Yan et al.
(2022) found that industrial structure upgrading significantly improves
air quality (Yan et al., 2022). Tan et al. (2022) found that the relation-
ship between industrial agglomeration and urban haze pollution is not
purely linear or inverted U-shaped but dynamically N-shaped, with
heterogeneous effects of agglomeration type on haze pollution (Tan
et al., 2022).

2.2. Study on the policy role of carbon emission reduction and air quality

The Chinese government has introduced policies to regulate carbon
emissions and air pollution, and academics have conducted corre-
sponding research. In terms of carbon emission reduction, Danish et al.
(2020) confirmed that environmental regulations effectively boosted
carbon emission reduction (Danish et al., 2020). Dai et al. (2022)
analyzed the spatial spillover effect of carbon trading policy on indus-
trial carbon intensity reduction through a spatial double-difference
model and found that it effectively lowered the carbon intensity in the
pilot area, while technological progress played an intermediary role (Dai
et al., 2022). Shen et al. (2023) empirically found that the pilot carbon
emissions trading policy reduced carbon emissions and promoted the
adjustment of industrial low-carbon structure (Shen et al., 2023).

In terms of mitigating air pollution, He et al. (2021) showed that
pollution rights trading policies are effective in promoting the "decou-
pling" of industrial pollution from economic growth. Low-carbon city
policies and carbon emissions trading policies play an important role in
reducing industrial smog emissions and carbon emissions (He et al.,
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2021). Guo et al. (2024) also found that healthy city pilot policies
significantly curbed industrial pollutant emissions and improved air
quality (Guo and Zhang, 2024). Xie et al. (2024) found that air pollution
regulation policies not only improved regional air quality but also
increased health and welfare benefits in the policy area (Xie et al.,
2024).

In carbon-air pollution synergistic governance, key technological
innovations play a driving role (Tian et al., 2023). Carbon-biased tech-
nological advances can promote synergistic governance through energy
savings or hinder it due to rebound effects (Zhang et al., 2023a).
Technology-biased energy can significantly mitigate carbon emissions
and PM2.5 pollution. Bollen et al. (2014) investigated the interactions of
climate change policies with greenhouse gases and air pollutants (Bollen
and Brink, 2014). Yi et al. (2022) analyzed the impacts of urbanization,
industry, economy, energy, and innovation on the synergistic manage-
ment of carbon-air pollution from a spatio-temporal perspective (Yi
et al., 2022), and these factors are mediators of the environmental
policies’ role in the pathway of synergistic management of carbon-air
pollution [52°54]. Shao et al. (2023) found that low-carbon policies
can improve the atmospheric environment by promoting the upgrading
of the industrial structure and optimization of the energy structure (Shao
et al., 2023). Xian et al. (2024) found that carbon trading policies
improved air quality in pilot areas by studying the relationship between
carbon trading policies and pollutant emissions from power and indus-
trial sectors (Xian et al., 2024b).

In summary, carbon emissions and air pollution are closely related to
the development of the secondary industry, while government policies
have been effective in reducing carbon emissions and mitigating air
pollution. Since carbon emissions and air pollution have a certain ho-
mologous nature (Wang et al., 2023), government regulation of one
aspect will have a synergistic effect on the governance of the other.
However, existing studies mostly focus on the synergistic governance of
a single policy, and the synergistic governance mechanism between the
two types of policies is still to be explored.

2.3. Causal effects modelling studies

At present, the causality assessment for policy effects mostly adopts
methods such as Regression Discontinuity Design, Synthetic Control
Methods, and Difference in Differences. For example, Bronzini R. et al.
(2014) assessed the effect of R&D policy through Regression Disconti-
nuity Design (Bronzini and Iachini, 2014). Chen and Lin, 2021 and Xian
et al. (2024) used Synthetic Control Methods and Difference in Differ-
ences, respectively, to assess the effects of carbon emissions trading
policy from different perspectives [°®59]. The basic logic of these
methods is to derive the causal relationship of X on Y by constructing a
counterfactual control group and comparing it with the policy inter-
vention group. This involves comparing the outcome of the hypothetical
research subject Y, after receiving policy intervention X, with the
outcome without policy intervention. Its data types can be divided into
the assessment of dichotomous variables and the assessment of contin-
uous variables (Pearl, 2000). However, in actual research, relevant
policies and data are non-experimental, making it impossible to set up
control results to identify causality through experimental interventions.

To account for the dynamic, complex, and nonlinear relationships
among the actual data, studies have combined network analysis models
with causal identification (He and Song, 2023). The linear non-Gaussian
acyclic model (LINGAM) proposed by Shohei Shimizu et al. (2006) is the
most basic method for causal function modeling (Shimizu et al., 2006).
On this basis, Hoyer and Shimizu designed an additive noise model
(ANM) and a linear non-Gaussian acyclic model based on Bayesian
estimation, respectively [63'64]. Liu et al. (2023) further constructed
the Gaussian nonlinear additive noise model and combined it with
graphical complex analysis, offering flexibility, adaptability to the
amount of data, and the ability to handle high-dimensional data. This
makes its causal identification results better than those of the traditional
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causal analysis model (Liu et al., 2023).
3. Material and methods
3.1. Data

This study collected datasets from 2003 to 2024 for each province in
China from various sources, including the National Bureau of Statistics
(NBS), CEADs China Carbon Accounting Database, Atmospheric
Composition Analysis Group of Washington University in St. Louis,
Public Health Science Data Centre, China Cause of Death Surveillance
Dataset, National Disease Surveillance System Cause of Death Surveil-
lance Dataset, Peking University Law Database, and provincial ecolog-
ical environment departments.

In the selection of relevant policies, a combination of dynamic and
static policy frameworks was adopted. Dynamic policies, which are
long-term sustainable penalties based on laws and regulations, better
reflect the effects of policy implementation. Static policies, which are
laws and regulations of the central government and individual prov-
inces, demonstrate the intensity of policy formulation and areas of focus.
Firstly, under static policy statistics, air pollution and low-carbon pol-
icies were retrieved based on keywords and synonyms. The number of
central and provincial policies was manually verified and counted. The
data were then divided into two groups: cumulative values and newly
added values. When calculating the cumulative value, two rules were
followed: first, the cumulative value for 2003 included all relevant
policies and regulations before that year; second, the policy or regula-
tion was removed when it lapsed or was repealed in a cumulative year.
Secondly, in calculating dynamic policies, policy implementation data
from the ecological environment departments of each province were
manually screened and identified. Finally, after repeated verification
and comparison, two sets of data were obtained for each type of policy:
static (new and cumulative) and dynamic values for the year. The spe-
cific breakdown of static and dynamic policies is illustrated in Table 1.

The data collected was categorized into several groups: The first
group on air pollution included air quality indicators (PM2.5, PM10, CO,
SO2, NOg, O3) and air quality policy (dynamic and static). The second
group on carbon emissions included CO; emissions and carbon emission
reduction policy (dynamic and static). The third group on the develop-
ment of the secondary industry included secondary industry added
value, energy industry investment, industrial policies (dynamic and
static), and total energy consumption. The fourth group concerned
human health impacted by air pollution, including data on respiratory
disease deaths, mortality rates, tuberculosis incidence, and incidence
rates. Additional control variables included Gross Regional Product
(economic data of each province), resident population at year-end (de-
mographic data of each province), number of R&D projects, and R&D
expenditure of industrial enterprises (reflecting the innovation activities
of major carbon-emitting enterprises), along with total energy
consumption.

Due to the large number of missing actual data, some variables with
too many missing years and poor interpolation fit were deleted. The
panel data from 2004 to 2022 was selected as the final dataset, with the
remaining missing years filled in using linear interpolation (Newton
interpolation, Lagrangian interpolation, KNN interpolation, and other
interpolation methods were considered but found to be negative and not
realistic).

3.2. Descriptive analysis

To visualize the air pollution and carbon emissions among provinces,
ArcGIS is used to plot the mean values of PM2.5 and CO; for each
province for the complete dataset from 2004 to 2022.

From Fig. 1, it is evident that air pollution is mainly concentrated in
North China, especially in Hebei (HB1) and Shandong (SD) provinces.
Surrounding provinces, such as Beijing (BJ), Tianjin (TJ), Shanxi (SX2),
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Table 1
Static - Dynamic Policy list (Part).
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policy Air quality policy

Carbon emissions reduction policy

Static: laws and regulations

Dynamic: Reward and punishment
implementation

Static: laws and regulations

Dynamic: Reward and punishment
implementation

Air Pollution Prevention
Law of the People’s
Republic of China (2018
Amendment)

The central
government

The provincial
government

Regulations of Guizhou
Province on the Prevention
and Control of Air
Pollution (Amended in
2023)

Regulations of Shaanxi
Province on Air Pollution
Prevention and Control
(Amended in 2023)

Regulations of Guangdong
Province on the Prevention
and Control of Air

Pollution (Revised in 2022)

Regulations of Jilin
Province on Prevention
and Control of Air

None

Case of Suspected Failure to set up air
pollutant discharge Outlets following
regulations (No. 2102321006)

Pujiang Hangbiao Material Packaging
Co., LTD. + Excessive emission of air
pollutants (Jinpu Huan penalty Word
[2020]28)

Shanghai Xiangzhe International Cargo
Transport Agency Co., LTD. Motor
vehicles, ships, and non-road mobile
machinery exceeding the standard
emission of air pollutants

About the case of Zaozhuang Longxiang
Furnace Material Co., Ltd. suspected of
discharging air pollutants in excess of

Notice of The General Office of the State
Council on issuing the 2014-2015
Action Plan for Energy Conservation,
Emission Reduction and Low-carbon
Development

Interim Measures of Hubei Province for
the Administration of Carbon Emission
Rights Trading

Trial Measures for Carbon Emission
Management of Guangdong Province

Trial Measures of Shanghai
Municipality for Carbon Emission
Management

Interim Measures of Shenzhen
Municipality for the Administration of
Carbon Emission Rights Trading

None

Zhejiang Huajia Thermal Power Group Co.,
Ltd. is suspected of key emission units did
not pay carbon emission quotas on time
and in full (Shao City Huan Penalty Word
[2022] No. 9 (new))

Chongging Ecological Environmental
Protection Comprehensive Administrative
Law Enforcement Corps Administrative
Punishment Decision No. 86 (Chongqing
Hechuan Salt Chemical Industry Co., LTD.)
Inner Mongolia Autonomous Region
Department of Ecology and Environment
Administrative punishment Decision (Inner
Ring punishment Word (2022) No. 9)

Hengsheng Energy Co., Ltd. suspected of
false reporting of greenhouse gas report
(Quhuan Longyou Penalty [2022] No. 14)

Pollution (Revised in 2022) pollutant discharge standards

Note: The data come from the Peking University Law Database (https://www.pkulaw.com/) and provincial ecological environment departments.
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Fig. 1. Average PM2.5 and CO, in China from 2004 to 2022. Note: Tibet appears white in the right panel due to the lack of data; each province’s name is capitalized
in the Chinese context. To effectively differentiate between provinces with the same abbreviation, numerical labels have been added after the abbreviation.

Henan (HN1), and Jiangsu (JS), also exhibit relatively high levels of air
pollution. The provinces with high carbon emissions have shifted
northwards from the PM2.5 center, primarily in the central and eastern
provinces, including Shanxi (§X2), Shandong (SD), Hebei (HB1), Henan
(HN1), and Jiangsu (JS). In contrast, regions like Tibet (XZ) and Qinghai
(QH) in the west have relatively low levels of both air pollution and
carbon emissions. This distribution may reflect the degree of industri-
alization and population density in each province. Additionally, the
consistency in the depth of color distribution in the figure suggests a
potential positive correlation between the concentrations of PM2.5 and
CO, emissions.

As depicted in Fig. 2, the GDP per capita and the secondary industry

added value are higher in the coastal regions, particularly in the eastern
provinces of Jiangsu (JS), Shanghai (SH), and Guangdong (GD).
Conversely, the western provinces such as Gansu (GS), Qinghai (QH),
and Tibet (XZ) exhibit lower GDP per capita and smaller secondary in-
dustry added value. Overall, regions with more advanced development
in the secondary industry also demonstrate relatively higher GDP per
capita.

A joint analysis with Fig. 1 shows a potential link between economic
development, industrialization, and environmental pollution. Regions
with higher levels of economic development and industrialization often
experience greater levels of environmental pollution. The secondary
sector (including manufacturing, construction, electricity, mining, etc.)
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Other Value Added

Secondary Industry
Added Value

Fig. 2. Average GDP per capita and value added of industries by province in China, 2004-2022.

is an important part of the industrialization and modernization process
and is usually associated with higher energy consumption and higher
pollutant emissions (including PM2.5 and COj). Coastal provinces,
especially economically developed regions, bring higher value added in
the secondary sector and corresponding pollutant emissions. In contrast,
regions such as Tibet (XZ) and Qinghai (QH), which are sparsely
populated and have relatively few industrial activities, have relatively
low pollutant emissions.

Note: Fig. A represents the mean value of new air quality-related
policies (static) for each province in the year 2004-2022, while Fig. B
represents the cumulative value of air quality penalties (dynamic) for
that province during the same period. Similarly, Fig. C represents the
mean value of new carbon emission reduction-related policies (static)
for each province in the year 2004-2022, and Fig. D represents the cu-
mulative value of new carbon emission reduction-related penalties
(dynamic) for each province over the same period. To effectively
differentiate between provinces with the same abbreviation, numerical
labels have been added after the abbreviation.

Fig. 3 shows the implementation of air quality policies and carbon
emission reduction policies in each province of China from 2004 to
2022, from both static and dynamic policy perspectives. Fig. 3A in-
dicates that a relatively large number of air quality policies have been
implemented in the central and eastern regions from 2004 to 2022,
especially in Henan (HN1), Shandong (SD), and Jiangsu (@JS).
Conversely, the northwestern regions, such as Qinghai (QH), Xinjiang
(XJ), Gansu (GS), and Tibet (XZ), have a relatively small number of new
air quality-related policies. Fig. 3B shows that Hebei (HB1), Shandong
(SD), and Jiangsu (JS) have a high number of environmental violations
from 2004 to 2022, based on the cumulative value of air pollution-
related penalties.

In terms of carbon emission reduction policies, Fig. 3C indicates that
the number of new policies in the central and eastern regions is higher
from 2004 to 2022, with Shandong (SD), Jiangsu (JS), and Guangdong
(GD) formulating more policies to promote carbon emission reduction.
Fig. 3D shows that the cumulative value of penalties for carbon emis-
sions is relatively high in the eastern region from 2004 to 2022, with
Guangdong (GD), Shandong (SD), and Zhejiang (ZJ) imposing severe
penalties for non-compliance with regulations.

Taken together, some provinces in East and South China have been
more active and stringent in implementing environmental protection
policies and penalties. This may be related to the local level of economic
development and industrial structure, as these provinces are highly

industrialized with intensive industrial activities, leading to relatively
high air pollutants and carbon emissions. Consequently, they face
greater environmental pressure. To cope with this pressure and promote
environmental quality improvement, the number of policies and pen-
alties is also relatively large.

3.3. Model

Based on the above, this study finally selects the causal network
model of Gaussian process regression (Hoyer et al., 2008) based on the
relevant literature in section 2.3 and the characteristics of the actual
data, and explores the impacts of carbon emission reduction policies
(dynamic and static) on carbon emissions, and the interactive impacts
on air pollution, respectively. Meanwhile, the effects of air quality pol-
icies (dynamic and static) on air pollution and the interaction effects on
carbon emissions are explored. In addition, this study explores the
mutual causality between industrial development, respiratory-related
diseases, and other control variables.

Firstly, the input data X = {x1,x2, ...,Xn}, which is the final dataset
after cleaning, and the corresponding output data is y = {y1,y2,.-.¥n}
where x; is the input vector and y; is the corresponding output vector.
Gaussian process regression first assumes that f(x) obeys a Gaussian
distribution and later predicts a new input x, and provides the proba-
bility distribution of its corresponding output y..

f(x) ~ GP(m(x), k(x,x)) (@)
Where N denotes the Gaussian distribution, m(x) is the mean function,
and k(x, x') is the covariance function. Given the observed data X and the
corresponding output y, it can be obtained:

( y ) N ( m(X) ) K(X,X)+0l K(X,X.)
fX) mX.) )\ KX.,X) KEX.X)
Where f(x) and y are identically distributed, K(X,X) is the covariance
matrix between the sample points in the observed data X, K(X., X.) is the
covariance matrix between the sample points in the new input data X,,
K(X,X.) is the covariance matrix between the observed data X and the
new input data X., 2 is the noise variance of the observed data, and I is
the unit matrix.

In the choice of kernel function, there are three types of commonly

used kernel functions: firstly, the linear kernel; secondly, the RBF
(Radial Basis Function); and lastly, the polynomial kernel. The RBF

(2)
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Fig. 3. Distribution of air quality and carbon emission reduction policies across provinces in China from 2004 to 2022.

kernel function, which can handle high-dimensional and non-linear
data, and has good generalization ability, is therefore chosen. The
function that measures the similarity of any two points in the input space
is equivalent to the inner product of a nonlinear mapping to an infinite
dimensional space. The RBF kernel is formulated as:

k(x,x)=exp( — |x — X|* / 26?) 3

Where x and X' are two points in the input space, |x — x'||* is the square
of the Euclidean distance between these two points. ¢ is the width
parameter of the kernel function, which controls the smoothness of the
function. The smaller the value of ¢ , the narrower and sharper the
function, implying that only points that are very close to each other are
considered similar.

Regression between variables through the Gaussian process, after
which the residuals between the two variables are calculated, and the
residuals e; are specified as follows:

e=Yi— Y “)
Where i denotes each observation, y; denotes the actual observation, and

¥; denotes the predicted mean.
Causality is inferred by determining whether the residuals and the

independent variables are independent of each other, thus constituting a
causal network. Causal inference follows these rules: (1) If x and x’ are
independent of each other, it is inferred that there is no causal rela-
tionship between the two; (2) If x is not independent of x/, x is inde-
pendent of residual n, X' is not independent of residual !, it is inferred
that x is the cause of x’; (3) If x is not independent x', x is not independent
of residual n, and x' is independent of residual 11, it is inferred that x' is
the cause of x; (4) The fact that x is not independent of x/, x is not in-
dependent of residual nn, and X’ is not independent of residual n’ suggests
that the generating mechanism is too complex to be directly inferred. It
can be reasonably explored by introducing other variables; (5) If x is not
independent of X, x is independent of residual n, and x’ is independent of
residual n', then one direction with a higher independence score is
chosen.

Considering the Maximum Mean Discrepancy (MMD) between the
distribution of the residuals and the distribution of the independent
variables, MMD as a basic kernel method has been widely used in
distributional inference as well as in transfer learning. In this study, refer
to HSIC (Hilbert-Schmidt independence criterion) to infer the indepen-
dence between variables through this kernel method, to deduce the
causal relationship. The specific framework of the idea is as follows(see
Fig. 4).
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4. Results

4.1. Causal analysis of carbon emission reduction policies

To explore the dynamic-static policy impacts related to carbon
emission reduction, the residuals of carbon emission reduction policies
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Fig. 4. Frame of thought figure.

and carbon emission variables, and the residuals of carbon emission
reduction policies and air pollution variables were measured, totaling 32
groups, of which only 4 groups are shown below.

Fig. 5 shows significant differences in the distribution of the residuals
of each group of variables. To more accurately identify the causal rela-
tionship of carbon emission reduction policy related to the multi-
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Fig. 5. Residual and scatter plots and probability density plots between variables related to carbon emission reduction policy (partial).
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dimensional assessment of policy synergy, the Maximum Mean
Discrepancy value between each variable was calculated. The results are
shown in Table 2.

From the table, it can be seen that the Maximum Mean Discrepancy
values between most of the variables are large, indicating that the var-
iables are independent of each other and there is no causal relationship.
However, Secondary Industry Added Value has a causal relationship
with PM2.5 and Carbon Emission Reduction Policy; Carbon Emission
Reduction Policy has a causal relationship with CO, Emissions and
PM2.5; the Incidence Rate of Tuberculosis has a causal relationship with
Carbon Emission Reduction Policy and PM2.5. Dynamic Policies (related
penalties) may have no relevant causal relationship with other variables
due to their low timeliness, incomplete coverage, and small scope of
influence (see the discussion section in Chapter 4 for specific analyses).
To further analyze causality, the causal diagram below was obtained by
categorizing it using the five categories of causal inference.

Fig. 6A shows that total apparent CO, emissions, secondary industry
added value, and the incidence rate of tuberculosis have led to the
introduction of carbon emission reduction policy, which is a form of
enforced environmental policy. (Environmental policies are often sha-
ped and implemented as a result of the intensification of environmental
pressures and problems, particularly in the areas of climate change and
environmental pollution, where high levels of carbon dioxide emissions
not only exacerbate global warming, but also have direct and indirect
negative impacts on ecosystems, human health and economic activity,
and such pressures prompt Governments to act proactively to shape and
implement carbon reduction policy to mitigate or reverse these adverse
impacts.) Secondly, the fact that the value added of the secondary sector
leads to carbon emission reduction policy suggests that industrial pro-
duction activities also influence carbon emission reduction policy and
that the aforementioned "forced" policies affect carbon emissions by first
influencing the value added of the secondary sector.

The fact that secondary industry added value and total apparent COy
emissions also contribute to the incidence rate of tuberculosis suggests
that industrial activities may lead to a deterioration in air quality,
thereby increasing the risk of respiratory diseases such as tuberculosis.
At the same time, increased carbon dioxide emissions may be a sign of
increased air pollution, and deterioration of air quality is closely related
to respiratory health problems. The incidence of respiratory diseases
such as tuberculosis contributes to PM2.5 in Fig. 6B, which may be due
to incomplete respiratory data. The incidence of tuberculosis is related
to PM2.5 but is also affected by multiple factors, such as poverty,
migration (Ponticiello et al., 2005), and COVID-19 (Namgung et al.,
2023), among others. Finally, Fig. 6A and B share similar causal logic,
suggesting that carbon emission reduction policies have similar impacts
on PM2.5 and total CO, emissions and that there are synergistic effects
of carbon emission reduction policies.

4.2. Causal analyses of air quality policies

To explore the impact of dynamic-static policies related to air

Table 2
Maximum mean discrepancy for carbon emission reduction policies.
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quality, the residuals of the related variables were measured. The re-
siduals of the variables related to air quality policy and carbon emission,
as well as the residuals of the variables related to air quality policy and
air pollution, totaled 32 groups, but only 4 groups are shown below.

Fig. 7 shows significant differences in the distribution of residuals for
each group of variables. To more accurately identify the causality
related to air quality policy and assess policy synergy in multiple di-
mensions, the value of Maximum Mean Discrepancy between each
variable is calculated. The results are shown in Table 3.

From the table, it can be seen that the Maximum Mean Discrepancy
values between most variables are large, indicating that the variables are
independent of each other and there is no causal relationship. However,
Secondary Industry Added Value has a causal relationship with PM2.5
and Air Quality Policy; Air Quality Policy has a causal relationship with
CO, Emissions, PM2.5, and the Incidence Rate of Tuberculosis. To
further analyze causality, the causal diagram below was obtained by
categorizing it using the five categories of causal inference and obtaining
Fig. 8.

The causal paths of Figs. 6 and 8 are the same, showing consistency
in the roles of carbon emission policy and air quality policy, and indi-
cating that policy synergy exists for both types of policies.

4.3. Multidimensional causal analysis of the other variables

Since carbon emissions and air pollution are also affected by many
indirect factors, the relationship between the remaining variables and
the value added by the secondary industry is analyzed to explore indi-
rect causation. The Maximum Mean Discrepancy value between each
variable is calculated, and the results are shown in Table 4.

From the table, it can be seen that the Maximum Mean Discrepancy
values between most variables are large, indicating that the variables are
independent of each other and there is no causal relationship. Total
Industrial Energy Consumption and Total Energy Consumption both
have a causal relationship with Secondary Industry Added Value, Resi-
dent Population at Year-End, Number of R&D Projects, R&D Expendi-
ture of Industrial Enterprises, and Energy Industry Investment; There is a
causal relationship between Total Energy Consumption and several
factors: Secondary Industry Added Value, Resident Population at Year-
End, Number of R&D Projects, R&D Expenditure of Industrial Enter-
prises, and Energy Industry Investment. To further analyze causality, the
causal diagram below was obtained by categorizing it using the five
categories of causal inference (see Fig. 9).

From a research and innovation perspective, R&D Expenditure of
Industrial Enterprises directly impacts the Number of R&D Projects that
a firm can initiate and sustain. Higher R&D investment usually means
more R&D projects can be financed, and an increase in the number of
R&D projects tends to be closely related to secondary industry added
value (manufacturing, construction, etc.). Higher value in the secondary
sector, in turn, feeds back into overall investment in the energy sector.
Additionally, firms in the secondary sector are likely to invest in energy
efficiency improvements and new energy technologies, further

Secondary Industry Carbon Emission Carbon Emission-related CO, PM2.5 Incidence Rate of
Added Value Reduction Policy Penalties Emissions Tuberculosis
Secondary Industry Added 0 0.994843425 1.001842502 0.994843425 0.994843428  0.999915824
Value
Carbon Emission 0.058655652 0 0.872166393 0.05834799 0.06180144 0.060806139
Reduction Policy
Carbon Emission-related 0.766711264 0.807041759 0 0.769271957 0.72502523 0.750758242
Penalties
CO, Emissions 0.805230263 0.805878503 0.88068809 0 / 1.004689008
PM2.5 0.157644704 0.176826079 0.835534051 / 0 0.179020181
Incidence Rate of 0.727992433 0.743420854 0.839292417 0.743117797 0.847275329 0
Tuberculosis
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Table 3
Maximum mean discrepancy of air quality policy.
Secondary Industry Added Air Quality Air Pollution-related CO, PM2.5 Incidence Rate of
Value Policy Penalties Emissions Tuberculosis
Secondary Industry Added 0 1.000291782 1.001842502 0.994843425 0.994843428  0.999915824
Value
Air Quality Policy 0.035232142 0 0.8703987 0.034146348 0.077638773  0.057274512
Air Pollution-related 0.858730417 0.854157011 0 0.861120574 0.815736197 0.844405234
Penalties
CO, Emissions 0.805230263 0.821543913 0.972995338 0 / 1.004689008
PM2.5 0.157644704 0.159453634 0.914921226 / 0 0.179020181
Incidence Rate of 0.727992433 0.740117478 0.9437172 0.743117797 0.847275329 0
Tuberculosis
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Table 4

Maximum Mean Discrepancy of the other variables.

Secondary Resident Number of R&D Expenditure of Energy Industry Total Industrial Total Energy
Industry Added Population at R&D Projects Industrial Enterprises Investment Energy Consumption Consumption
Value Year-End
Secondary Industry 0.000000 0.994843 0.994843 0.994843 0.994843 0.994843 0.994838
Added Value
Resident Population at 0.873221 0.000000 0.875655 0.871707 0.896400 0.873225 0.873184
Year-End
Number of R&D 0.753423 0.788433 0.000000 0.753433 0.946792 0.946745 0.758763
Projects
R&D Expenditure of 1.001755 1.001755 1.001755 0.000000 1.001755 1.001755 1.001755
Industrial
Enterprises
Energy Industry 0.469389 0.488818 0.469410 0.469484 0.000000 0.491054 0.485429
Investment
Total Industrial Energy 0.060025 0.060283 0.060194 0.059926 0.063617 0.000000 0.864266
Consumption
Total Energy 0.054460 0.054753 0.054611 0.054386 0.058077 1.052632 0.000000
Consumption
concentrations are closely related to respiratory health problems and
S/ef';"d‘:;;y‘l,:f::t\rf affect public production and living activities. With increasing public
‘/// \ n attention to climate change and air pollution, and growing demand for
Total Energy _ \ \\\"\l“ntal Tdustrial government action, there is pressure on the government to proactively
Cons@pption. N\ ]‘f??fg\y\ S@BSumption formulate and implement policies related to carbon emission reduction
g 8 Y \1 \\\ and air quality to mitigate or reverse these adverse impacts. Secondly,
i kS due to the economic impact (Li et al., 2019) l691, carbon emissions and
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Fig. 9. Causal network figure of other variables.

contributing to investment in the energy sector.

In terms of energy consumption, an increase in the secondary in-
dustry added value usually leads to higher energy consumption, as more
productive activity requires additional energy. Similarly, heightened
industrial activity boosts energy demand, directly increasing total en-
ergy consumption. Furthermore, a growing population, implying more
residential, commercial, and industrial activities, also escalates total
energy consumption.

5. Discussion
5.1. Discussion on "policy forced" mechanisms

The enactment and implementation of static policies related to air
quality and carbon emission reduction have a "forcing effect", driven by
factors such as total apparent CO, emissions, PM2.5, secondary industry
added value, and the incidence rate of tuberculosis. This “forcing”
mechanism arises firstly due to public awareness and pressure (Chai
et al., 2024) (Chai et al., 2024). High levels of carbon dioxide and PM2.5

10

air pollution are closely related to economic activities. Environmental
policy affects the economic structure, and the environmental problems
caused by industrial production activities also force the generation of
environmental policy. The aforementioned reverse policy influences the
value added by the secondary industry, impacting carbon emissions and
air pollution. Additionally, international cooperation and commitments,
including China’s pledges on carbon peaking and neutrality, further
drive the formulation and implementation of these policies.

The dynamic policy, including associated penalties, shows no rele-
vant causal relationship with other variables. This may be due to the
complexity of the multilevel governance structure, which leads to
insufficient enforcement of penalties (Nagel and Bravo-Laguna, 2022)
[70]. Consequently, the dynamic policy has a relatively small impact.
From 2003 to 2023, only four provinces recorded more than 100 pen-
alties for environmentally non-compliant firms, indicating insufficient
enforcement in most provinces. This insufficiency may be influenced by
local economic development and political relations (Florackis et al.,
2023) 711. Additionally, income and R&D investment are closely
related (Hartmann et al., 2006) [72]. Penalties reduce firms’ revenues,
and ex-post penalties that immediately mitigate pollution can have a
negative impact (Li et al., 2022) [73]. Firms may engage in symbolic
environmental disclosure, which inhibits the effectiveness of environ-
mental penalties in promoting substantive environmental governance
activities (Zhou et al., 2024) [74].

The causal network diagrams for air quality policy and carbon
emission reduction policy under static policies are structured consis-
tently. Total carbon emissions drive the development of both carbon
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emission reduction and air quality policy, with PM2.5 concentrations
exerting a similar influence on both policy types. This indicates policy
synergy between the two static policy types concerning air pollution and
carbon emission governance. This synergy stems from the close rela-
tionship between carbon emissions and air pollution (Wang et al., 202.3)
(Shao et al., 2023). Most sources of carbon emissions are significant
contributors to air pollution, and vice versa, so static policies targeting
both issues share commonalities.

5.2. Causal discussion of secondary industry added value

The development of the secondary industry is closely related to
carbon emissions and air pollution. In this study, the secondary industry
added value is used to portray its development and verify the impact on
carbon emissions and air pollution. The increase in the secondary in-
dustry added value implies an increase in size, and the high concen-
tration of heavily polluting and energy-intensive sectors (e.g., iron and
steel, cement, chemicals) exacerbates air pollution emissions (Zhu et al.,
2019) (Zhu et al., 2019). Simultaneously, the expansion of the secondary
industry increases energy consumption, leading to higher carbon diox-
ide emissions (Xiao et al., 2019) (Xiao et al., 2019).

In the realm of scientific research and innovation, the value added by
the secondary industry impacts the number of R&D projects. As the
secondary industry develops, the demand for technological innovation
rises, aiming to reduce energy consumption rates and enhance produc-
tion efficiency, product quality, and competitiveness. This demand
prompts enterprises to boost R&D investment and expand the number of
R&D projects. Tian et al., 2024 and Zhang et al.(2023) express similar
views in their studies (Tian et al., 2023; Zhang et al., 2023c).

At the level of energy consumption and energy investment, the sec-
ondary industry added value influences total industrial energy con-
sumption, total energy consumption, and energy industry investment.
As the production scale of the secondary industry expands, more energy
is needed to maintain production, leading to an increase in industrial
energy consumption (Wang et al., 2020), which further leads to a rise in
total energy consumption. Simultaneously, the energy industry, being a
part of the secondary industry, is closely linked to investment in the
sector. Thus, investments in the secondary industry also impact the
overall investment in the energy industry (Liu et al., 2019).

6. Conclusions and recommendations
6.1. Conclusion

This study applies the causal network model of Gaussian process
regression to analyze the combined effects of dynamic and static carbon
emission reduction and air quality policies on carbon emissions and air
quality, and to evaluate the causal effects of policy measures and their
synergies. The following conclusions are drawn.

(1) Regional differences and uneven policy implementation. Signifi-
cant differences in the correlation between economic develop-
ment and environmental pollution are demonstrated between the
eastern coastal provinces and the western provinces. More
economically developed areas, such as Jiangsu and Guangdong,
which have higher GDP per capita and value-added in the sec-
ondary sector, also exhibit higher levels of environmental pollu-
tion. These regions show significant activity and rigor in
formulating and implementing carbon emission and air quality
policies. In contrast, western provinces like Qinghai and Tibet
have relatively lax environmental policies, correlating with their
lower industrialization and population density. Furthermore,
some of these provinces have zero dynamic policy data (cumu-
lative value of penalties for environmental violations), revealing
wide variations in the long-term effects of policy implementation
and the actual strength of implementation.
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(2) Synergies exist between carbon emission reduction policy and air
quality policy. These policies not only share objectives in
reducing carbon dioxide emissions and air pollution but also
mutually reinforce each other in implementation. The two types
of static policies have a certain degree of substitutability in the
governance of carbon dioxide emissions and air pollution. By
optimizing resource allocation and implementation strategies,
these policies can exert a broader positive impact on reducing
environmental pollution and enhancing public health.

(3) The existence of an environmental policy forced effect. Causal
analysis results indicate that air pollution, carbon dioxide emis-
sions, secondary industry added value, and the incidence rate of
tuberculosis are all causes that correlate with two types of pol-
icies. This suggests that worsening environmental issues drive the
formation and implementation of policies. This effect is especially
pronounced in areas with high levels of environmental pollution
or significant environmental challenges, where policy formula-
tion and implementation serve not only as direct responses to
existing problems but also as strategies to mitigate potential
future environmental risks.

Presence of indirect effects of industrial activities. The value

added in the secondary sector is a key driver in shaping carbon

emission reduction policy and air quality policy. Rising value
added in the secondary sector contributes significantly to total
carbon dioxide emissions, worsening air quality, and directly
increasing the incidence of respiratory diseases such as tubercu-
losis. Increases in R&D expenditures, often closely associated
with value added in the secondary sector, enhance firm profit-

ability and enable higher investments in energy efficiency im-

provements and new energy technologies. Therefore, effective air

quality management policies must consider both the direct and
indirect effects of industrial growth.

(4

—

6.2. Recommendations

Based on the above conclusions, the following feasible recommen-
dations for the synergistic governance of air pollution and carbon
emissions are proposed.

(1) Due to the existing synergies between carbon emission reduction-
related policies and air quality-related policies, promoting cross-
sectoral cooperation is crucial to optimize these synergies. The
government should establish a cross-sectoral coordination
mechanism to ensure effective coordination between environ-
mental and public health policies. This mechanism should focus
on integrating the objectives of carbon emission reduction and air
quality control, promoting complementarity and synergy be-
tween policies through resource and information sharing.

(2) Given the indirect impacts of industrial activities, strengthening

industrial regulation and promoting the research, development,

and application of cleaner technologies is crucial. Increasing
regulation of secondary industries, particularly those that are
highly polluting and energy-intensive, is essential while also
encouraging and supporting enterprises to invest in the research
and development of clean technologies and energy efficiency
improvements. Policy measures could include providing tax in-
centives, technical assistance, and innovation funds to promote
the R&D and commercialization of low-carbon technologies.

Additionally, the government could mandate that enterprises

disclose their energy consumption and emissions data to enhance

transparency and facilitate monitoring by the public and regu-
latory agencies.

Dynamic evaluation and flexible adjustment of policies are

crucial due to regional differences and varying degrees of policy

implementation. Governments should regularly evaluate the
effectiveness of environmental and public health policies to

3
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ensure they adapt to scientific and technological progress as well
as market changes. The evaluation process should incorporate up-
to-date data on scientific research, technological developments,
and socio-economic factors, allowing for necessary adjustments.
Such a dynamic policy adjustment mechanism ensures that pol-
icies remain effective and relevant while also enhancing policy

synergy.
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