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A B S T R A C T   

A large discrepancy exists between the dire impact of climate change projected by most natural 
scientists and the modest estimates of damages calculated by mainstream economists. In this 
article, we first measure the climate risk, including the transition and physical risks, in China 
using textual analysis. Then, considering the heterogeneity of climate change’s effect, we 
investigate the impact of climate risks on the brown and green assets of China (including price, 
volatility, and correlation) for the period from February 2012 to April 2022. In addition, the 
performance of China’s green assets and international precious metal assets is examined in 
hedging the climate risk exposure of China’s brown assets. The results reveal that transition and 
physical risks lead to contrary changes in the prices of brown and hedging assets. Transition risk 
causes the volatility of brown and green assets to change in the opposite direction, while physical 
risk causes the volatility of the two types of assets to change in the same direction. Under extreme 
climate risk conditions, the correlation between brown and hedging assets decreases. Finally, the 
findings show that the performance of international precious metals in hedging climate risk 
exposure is better than that of China’s green equity assets.   

1. Introduction 

Global warming and the frequent occurrence of extreme climate events are posing increasingly grave threats to public health, social 
stability, and economic and financial systems. However, the global journey towards a low-carbon transition to address climate change 
is still in its nascent stages, and significant uncertainties persist regarding the trajectory and economic implications of climate change 
(Engle et al., 2020; Krueger et al., 2020; Lin & Wu, 2023; Vona, 2023). Climate risks are seriously underestimated (Engle et al., 2020; 
Le Ravalec et al., 2022). Therefore, it is crucial to delve into how climate change risks impact financial markets and explore whether 
the negative externalities can be alleviated through resource allocation strategies for informed investment decisions and enhanced 
financial stability. 

The Basel Committee on Banking Supervision pointed out that risks associated with climate change can be classified into two 
categories: physical risk and transition risk. Physical risk refers to the risks caused by climate events (e.g., forest fires, storms, and 
floods) and the long-term changes in climate patterns (e.g., rising temperatures and sea levels as well as changes in rainfall patterns). 
Transition risk refers to uncertainties related to policy adjustment, technological substitution, and consumption preference change, 
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which may impact the financial side of the economy (Basel Committee on Banking Supervision, 2021a, b). Climate risks affect financial 
markets through microeconomic and macroeconomic channels (Basel Committee on Banking Supervision, 2021b). For example, 
climate disasters and extreme weather events bring financial losses to companies, while climate risk exposure may have heterogeneous 
effects on stock returns in several ways (Bua et al., 2021; Yao et al., 2023). Furthermore, Hong et al. (2019) stated that climate change 
risks cannot be narrowly confined to carbon exposure. Companies’ production processes are vulnerable to natural disasters, which are 
amplified by climate change and can cause significant damage to company profits. Therefore, in addition to the physical risks, it is 
important to consider the transition risk, which are specifically reflected in unexpected price adjustments and defaults produced by the 
uncertainty of the transition process from a high carbon to a low carbon economy. In other words, the transition involves additional 
risks for asset managers, institutional investors, and banks, including the risks brought about by policy adjustment, technological 
innovations and market changes (Battiston et al., 2021; Lamperti et al., 2021). 

The effects of climate risks, especially transition risks, on the financial market are heterogeneous (Bushnell et al., 2013; Faiella 
et al., 2022). During the transition to a low-carbon economy, companies face significant transition risk, which may increase business 
costs and destroy the feasibility of existing products or services (Capasso et al., 2020). In addition, the risks of a rapid transition to a 
low-carbon economy may affect both the brown and green sectors (Semieniuk et al., 2021). Companies with high carbon emissions 
may face a greater risk of default (Andersson et al., 2016; Bach et al., 2022). Meanwhile, transformation policies can direct financial 
flows in a green direction (Campiglio, 2016; Volz, 2017). This broadens green companies’ access to their financing and enhances 
liquidity, with capital-driven technological upgrades further increasing the productivity of enterprises and the sector as a whole (Lai 
et al., 2021; Rozenberg et al., 2013; Wang & Shen, 2016). Conversely, the low-carbon transition may directly lead to the revaluation 
and unexpected impairment of high-carbon assets and even liabilities for investments in brown industries (Dietz et al., 2016). The strict 
macro-prudential policies and the need for investment in technological upgrades may lead to significant increases in financing and 
production costs (Lee & Lee, 2013; Liu et al., 2024; Nehrebecka, 2021; Wang & Wang, 2021), which means that brown industries are 
threatened by multiple transition risks. Therefore, the uncertainty brought about by climate risks may affect the lending willingness of 
banks, resulting in more stringent lending conditions for relevant high-carbon enterprises and leading to the decline of credit supply 
and market liquidity(Bua et al., 2021; Huynh & Xia, 2021). Furthermore, climate risks indirectly affect financial market stability 
through investors’ risk perceptions and expectations. By embedding climate change risk information into the portfolios of US equity 
funds, Reboredo and Otero (2021) found that investors were aware of climate-related transition risks and allocated more money to 
funds with lower climate change risk. Therefore, divestment tends to occur in carbon-intensive industries. 

Regarding this possible loop between financial markets and climate risks, efforts to measure exposure to climate risks are still in the 
preliminary stage. One research strand has employed the climate events (droughts, flooding, sea-level rise and high temperatures) as 
proxies of physical risks and analyzed their effects (Bernstein et al., 2019; Choi et al., 2020; Hong et al., 2019; Murfin & Spiegel, 2020). 
In regards to the transition risk, Morningstar launched a quarterly assessment of the transition risk embedded in its funds in the form of 
a CRS metric in 2018. Meanwhile, some studies also employed the carbon emission (Bolton & Kacperczyk, 2021; Chava, 2014; Xie 
et al., 2023) and carbon efficiency (Trinks et al., 2020) as proxies to consider the connection between climate change and stock prices 
and to direct investment and financing. Another important strand that measures climate risks is based on text mining methods (Cepni 
et al., 2022). Using a text analysis of the Wall Street Journal, Engle et al. (2020) extracted a climate change risk index from 
climate-related news. Further, Klbel et al. (2021), Bua et al. (2021); Krueger et al. (2020) built on previous research and distinguished 
between physical and transition risks based on a text analysis, respectively. As one of the most important economics, the climate risk 
faced by China has drawn increasing attentions and been measured based on the text mining methods (Lee & Cho, 2023; Xu et al., 
2024). 

Despite the global risks of climate change, China’s temperature rise rate was higher than the global average level according to the 
China Blue Book on Climate Change 2022, which means that China is a region sensitive to climate change. As the world’s largest 
developing country, China is still in the stage of rapid industrialization and urbanization, and its demand for energy and resources 
remains high, which has produced significant challenges in addressing climate change. According to the China Energy Development 
Report (2022), China’s energy endowment is characterized by “more coal, less oil, and less gas”, with coal accounting for 80% of 
primary energy consumption. This energy consumption structure determines the basic characteristics of China’s economic develop
ment, which involves high carbon emissions. In 2020, a clear goal “Carbon Peak and Neutrality” was set. Since then, a series of climate- 
related policies were developed, with increasing attention being paid to this policy event. Using the event study methodology, Guo 
et al. (2020) found that the stock market reacted negatively to the enforcement of new environmental policies. Using the 
difference-in-differences (DID) model, Han et al. (2023) demonstrated that the mandatory implementation of carbon trading policies 
increases the risk of financial distress for heavy emission enterprises, such as power enterprises. However, research on China’s climate 
transition is still in its infancy, and remains a lack of effective indicators and uniformity in methods for measuring the risk associated 
with the low-carbon transition. 

Consequently, following the studies of Engle et al. (2020) and Bua et al. (2021), we measured China’s climate risks (physical risk 
and transition risk) using textual mining methods. Considering the heterogeneous effect of climate risks, we also investigated the 
heterogeneous impact of climate change risks on the brown and green assets of China (including price, volatility, and correlation). 
Finally, we examined the performance of China’s green assets and international precious metal assets in hedging the climate risk 
exposure of China’s brown assets. According to portfolio theory and asset pricing theory, we know green assets that can effectively 
hedge the climate risk exposure of brown assets need to meet the following conditions: heterogeneity in response to climate risk shocks 
in terms of price and volatility; Low correlation with brown assets. Therefore, before measuring the hedging efficiency of green assets 
against the climate risk exposure of brown assets, we need to fully capture the impact of climate risk on the prices, volatility, and 
correlations of the two types of assets. 
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The main innovations of this article are as follows: (1) Existing studies related to climate risks have mainly addressed the developed 
economics. Using a text mining method, we analyzed the news data, identifying and measuring the following two climate risk indexes 
for China, the physical risk index (PRI) and transition risk index (TRI). This is a novel accomplishment that expands climate risk 
research in relation to emerging economics. (2) To examinate the heterogeneous influences of climate risks, we identified carbon 
sensitive assets, including brown and green assets. Using the VAR-BEKK-GARCH model, we analyzed the dynamic correlations be
tween climate risk and carbon-sensitive assets. (3) Based on the dynamic correlations between climate risks and the financial market, 
we explored hedging strategies for the extreme state of climate risks. This provides a decision-making reference point for portfolio 
management. 

The rest of the article is structured as follows: Section 2 introduces the construction of the climate risk indexes (physical risk and 
transition risk), based on text mining and discusses the analysis. Section 3 considers the time-varying correlation between climate risk 
perception and potential hedging assets. Section 4 constructs investment portfolios for hedging climate risks. Finally, the paper 
summarizes the overall analysis and proposes suggestions. 

2. Methodology and data 

2.1. Measuring climate risk based on text mining 

Following Engle et al. (2020) and Bua et al. (2021), we measured climate risks in China (physical risk and transition risk) using 
news data from China. First, the characteristics of climate risks were defined, and keywords related to physical risk and transition risk 
were extracted from the authoritative literature. A BM25(Best Matching) algorithm was further used to mine the news data, and the 
degree of climate risk was determined according to the match between the news data and the keywords. The specific procedures are 
depicted in Fig. 1. 

2.1.1. Extracting keywords of climate risk 
First, keywords related to climate risks, including physical and transition risks, were identified. To ensure the adequacy of the 

keywords, we referred to reports on climate change published by government authorities, international organizations and other 
authoritative institutions, such as the Intergovernmental Panel on Climate Change (IPCC) climate change series reports, China’s White 
Paper on Climate Change, government work reports and other normative documents, as shown in Table 1. We identified the most 
common words related to environmental and climate risks in these reports, creating separate keyword lists for physical risks and 
transition risks. Finally, we selected 156 keywords for physical risks and 167 keywords for transition risks (see Table 2). 

We extracted the news data from China Economic Information Network (CEINET). CEINET is a national economic information 
network jointly established by the State Information Center and the information centers of ministries and provinces. Its information is 
authoritative, timely, and comprehensive. In addition, CEINET data could be obtained for a long time span. Using a text mining 

Fig. 1. Measurement procedure for climate risks.  
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method, we obtained CEINET’s financial news from February 6, 2002, to July 31, 2022, gathering a total of 43,939 articles, which 
constituted the foundation of this study. 

Before text matching, we conducted data processing first: null and missing values in the text were deleted, and word segmentation 
was carried out. We split each news item into a single-word vector list with selected keywords as references, and removed non-essential 
characters such as punctuation. Then, the word frequency of each keyword in each article was calculated, and the keywords with the 
highest frequency were identified on this basis. The results showed that “earthquake”, “water resource” and “natural disaster” were 
often mentioned in relation to physical risks, while “new energy”, “sustainable development”, “energy conservation and emission 
reduction” and “carbon emissions” were mentioned frequently in relation to transition risks. These terms reflect the main concerns 
regarding physical and transition risks over the past two decades. 

2.1.2. Measuring the climate risk 
The textual similarity between a keyword list and a news corpus was calculated using the BM25 algorithm. In the information 

retrieval field, BM25 is a classic algorithm for calculating the similarity score for a “search query”, that is, between keywords and a 

Table 1 
Keywords sources.  

Source Report Year 

International Authoritative Reports 
IPCC Climate Change Annual 

report 
IPCC Synthesis Report 2001 

IMF The Effects of Weather Shocks on Economic Activity 2017 
UNEP FI- Acclimatise Navigating a new climate Part 2: Physical risks and opportunities 2018 
IPCC Special Report: Global warming of 1.5C 2019 
Swiss Re Institute Natural catastrophes in times of economic accumulation and climate 

change 
2020 

Authoritative reports in China 
Government of the People’s Republic of China the Government Work Report Annual 

report 
The state Council Information Office of the People’s Republic of 

China 
White Paper on China’s policies and actions on climate change Annual 

report 
China Meteorological Administration China Climate Bulletin 2021 

China Blue Book on Climate Change 2022 2022  

Table 2 
Summary statistics for the brown and green asset returns.   

Mean Std.dev Skewness Kurtosis Jarque-Bera ARCH ADF 

Brown assets 
PETR 0.036 2.924 − 1.214 7.361 1172.545*** 60.277*** − 8.729*** 
BUMA 0.160 3.404 − 1.085 5.605 705.472*** 84.607*** − 7.840*** 
NONM 0.058 3.720 − 0.840 4.580 465.202*** 73.808*** − 8.100*** 
STEE 0.026 3.317 − 0.681 4.099 365.029*** 45.194*** − 7.588*** 
BCHE 0.180 3.216 − 1.260 6.656 988.800*** 107.966*** − 7.661*** 
AIRP 0.071 3.458 − 0.635 10.037 1996.718*** 53.343*** − 7.717*** 
PAPE 0.093 3.376 − 1.431 8.175 1463.664*** 112.473*** − 7.196*** 
THES 0.073 3.551 − 1.868 13.886 4030.079*** 136.014*** − 7.740*** 
THEP 0.053 2.962 − 0.718 6.856 958.299*** 84.603*** − 8.284*** 
Green assets 
RESI 0.111 3.075 − 0.328 2.400 121.613*** 73.846*** − 7.929*** 
SUSI 0.171 3.144 − 0.274 1.882 75.681*** 115.785*** − 7.382*** 
GOVI 0.099 2.926 − 0.417 2.486 135.093*** 78.449*** − 7.953*** 
ESGI 0.119 2.926 − 0.450 1.747 75.997*** 66.053*** − 7.805*** 
ENVP 0.188 3.572 − 0.459 1.687 72.540*** 127.924*** − 7.523*** 
LCAR 0.266 3.541 − 0.328 1.495 52.628*** 99.210*** − 7.717*** 
GREB − 0.006 0.312 − 0.737 5.288 588.924*** 54.051*** − 6.725*** 
Safe-haven assets 
PALL 0.310 4.583 − 0.480 13.010 3318.079*** 96.382*** − 8.259*** 
PLAT − 0.120 3.460 − 0.373 6.767 905.379*** 152.393*** − 8.684*** 
SILV − 0.089 3.669 − 0.064 3.442 232.645*** 68.487*** − 7.345*** 
GOLD − 0.012 2.060 − 0.370 1.704 68.032*** 37.243*** − 7.393*** 
Climate risk 
TRI − 0.001 0.371 − 0.406 0.513 18.164*** 58.917*** − 11.539*** 
PRI 0.000 0.865 − 0.414 1.847 80.623*** 84.730*** − 12.368*** 

Note: ARCH denotes the Lagrange Multiplier test statistics for autoregressive conditional heteroscedasticity. ADF refers to the Augmented Dickey 
Fuller unit root test. ***, * *, and * indicate 1%, 5% and 10% significance levels, respectively. 
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document. The general formula for BM25 was as follows: 

Score(Q, d)=
∑n

i
WiR(qi, d) (1)  

where Q represents the keyword vocabulary for two types of risk, and qi represents a keyword in the vocabulary. d denotes a specific 
search document. R indicates the adjusted term frequency. Score represents the similarity between the keyword list and the news 
document, calculated by measuring the matching number of words between the query and the document. The higher the query word’s 
frequency in the searched document, the higher the inverse document frequency of the query word; the shorter the length of the 
searched document, the higher the score. The matching score with the transition risk keyword list was called TRI, denoted as ScoreTRI. 
Correspondingly, the matching score with the physical risk keyword list was called PRI, denoted as ScorePRI. Wi represents the weight 
of the keyword qi. 

W(qi)= log
N − dfi + 0.5

dfi + 0.5
(2)  

where N represents the total number of documents in the index, and dfi is the number of documents containing qi. Based on the inverse 
document frequency (IDF) of a term, for a certain qi, the more documents containing qi, the less important or distinctive qi is. The 
probability of occurrence is inversely proportional to the number of times the term appears in all documents. 

Next, we calculated the adjusted term frequency R. 

R=
(k1 + 1)tftd

k1((1 − b) + b × Ld/Lave) + tftd
(3)  

where tftd is the term frequency of word t in document d, Ld is the length of document d, Lave is the average length of all documents, and 
variable k1 is a positive parameter used to standardize the range of article term frequency. When k1 = 0, the mode is binary (no term 
frequency), while a greater value corresponds to greater raw term frequency information. b is another adjustable parameter (0 ≤ b ≤ 1) 
that controls the influence of document length on similarity: when b = 1, the weight of words is determined according to the length of 
the whole document, and when b = 0, the influence of document length is not considered. Through experimentation, the three 
adjustable parameters of k1 can be set between 1.2 and 2, and b can be set to 0.75. 

2.2. BEKK-GARCH model 

To test the impact of climate risks on the price of brown assets and hedging assets, we specified the conditional mean equation as 
follows: 

{
Ra

t = μa + αa
1Ra

t− 1 + βa
1Rc

t− 1 + εa
t

Rc
t = μc + αc

1Rc
t− 1 + εc

t
,with εt =

(
εa

t

εc
t

)

(4) 

The superscript letters a and c represent asset and climate risk indicators, respectively. Ra
t and Rc

t represent asset price return and 
climate risk change rate at time t, respectively, while βa

1 measures the impact of climate change risks on asset returns. εa
t and εc

t are the 
residuals of the conditional mean equation. 

Next, to measure the impact of climate change risks on the volatility (risk) of brown assets and hedging assets, we introduced the 
BEKK-GARCH model. Because our focus was on the volatility spillover effect of climate change risks on assets, and given that the 
volatility spillover of the opposite side was neither practical nor consistent with the objectives of this study, we adopted a the restricted 
BEKK model with the following specific settings: 

εt =

(
εa

t

εc
t

)⃒
⃒
⃒
⃒
⃒
Ωt− 1 ∼N(0,Ht),Ht ≡

(
ha

t

hc&a
t

hc
t

)

(5)  

where εt is the residual obtained from the conditional mean equation (4) and Ωt− 1 is the information set that contains all information 
available prior to time t. The BEKK representation of the variance-covariance matrix Ht was specified as follows: 

Ht =CCʹ + Aεt− 1έt− 1Aʹ + BHt− 1Bʹ (6)  

with C =

(
c11
c21

c22

)

,A =

(
a11
a21

a22

)

,B =

(
b11
b21

b22

)

. 

Where C, A and B are (2 × 2) lower triangular coefficient matrixes. A is a matrix of autoregressive conditional heteroscedastic 
(ARCH) parameters, while aij measures the effects of shocks from markets i to j. B is matrix of GARCH parameters, while bij captures the 
volatility transmission from markets i to j. These specifications guarantee that the variance-covariance matrices are positive definite. In 
the BEKK-GARCH models of climate risks selected assets, the first and second variables are asset and risk indicators, respectively. 
Therefore, b21 in the conditional volatility equation measures the volatility spillover effect of climate risks on an asset. We applied the 
quasi-maximum likelihood (QML) method to estimate the BEKK-GARCH model, in which the conditional distribution of εt was 
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assumed to follow a joint t-distribution. Next, after estimating the BEKK-GARCH model, we calculated the conditional variance and 
conditional covariance of the two variables and then calculated the dynamic correlation to investigate the dynamic linkages. 

2.3. Data and preliminary analysis 

Based on the BM25 algorithm introduced in Section 2.1, weekly PRI and TRI were constructed. Fig. 2 shows the PRI, TRI, and HP 
filter curves. Physical risks were closely related to disaster events. For example, PRI reached its peak when the Wenchuan earthquake 
occurred in 2008, which was the most destructive earthquake, with the heaviest disaster losses and the most difficult rescue operations, 
since the founding of the People’s Republic of China. For the most time, TRI was higher than PRI, particularly in recent years. The 
peaks in the transition risk occurred in relation to important climate policy milestones, such as the proposal for a greenhouse gas 
emission control action target in 2009 and the official launch of China’s Carbon Peak and Neutrality target in 2021. 

To analyze the evolution and distribution of climate risks, the following four stages were identified according to the process of 
China’s climate transition: the first stage (from June 2007 to October 2011) was the planning period for the climate policy mechanism, 
the second stage (from October 2011 to November 2015) was the “12th Five-Year” emission reduction commitment period, the third 
stage (from November 2015 to September 2020) was the “13th Five-Year” policy declaration period, and the fourth phase (from 
September 2020 to March 2022) was the “Carbon Peak and Neutral” era during the COVID-19 pandemic. The probability density 
distribution of PRI and TRI is depicted in Fig. 3. Given that the physical risk was mainly related to natural disasters caused by climate 
change, the distribution of PRI was right biased and varied slightly at different stages. Relatively speaking, TRI was closely related to 
climate policies and the climate transition process. As shown in Fig. 3, TRI was right-biased at all four stages, but as the domestic 
climate transition deepened, the distribution of this index gradually dispersed gradually dispersed. In the fourth stage, the distribution 
of transformation risks was clearly dispersed and became flatter compared to the previous stages. In the “Carbon Peak and Neutral” 
stage, China actively considered and formulated climate transition plans. As a result, uncertainty related to climate transition became 
high, which led to a significantly improved TRI. 

To investigate sectoral heterogeneity and structural changes in sectoral linkage in response to the low-carbon transition, we chose 
the Shenwan Industry Index to identify sector characteristics. The Shenwan Index is categorized according to the main business income 
and profit of the listed companies, and the constituent stocks of each sector were selected from all the stocks in the Shanghai and 
Shenzhen markets, which are highly representative to the Chinese financial market. To consider carbon-sensitive assets accurately and 
comprehensively, we extracted brown and green assets to explore the dynamics of industries during the low-carbon transition. Based 
on the National Development and Reform Commission (2016),1 brown assets include Petrochemicals (PETR), Building materials 
(BUMA), Nonferrous metals (NONM), Steel (STEE), Basic chemical industry (BCHE), Airports (AIRP), Paper industry (PAPE), Thermal 
service (THES) and Thermal power (THEP). 

Green assets include the Responsibility index (RESI), the Sustainable industries (SUSI), the Governance index (GOVI), Environ
ment, the Social and Governance index (ESGI), the Environmental protection industry (ENVP), the Low carbon index (LCAR) and the 
Green bonds (GREB). These assets stand out with their exceptional environmental benefits, as they allocate their financial resources 
towards sustainable "green" initiatives, encompassing minimal carbon emissions, energy efficiency, and the promotion of environ
mentally friendly products (Bhattacherjee et al., 2024). 

In addition, to select the optimal asset for hedging climate risks on a broad scale, we included international precious metal 
commodities as safe-haven assets. The safe-haven assets included Palladium (PALL) and Platinum (PLAT) futures in the New York 
Mercantile Exchange, London Silver (SILV) and Gold (GOLD). The sample period ranged from February 2012 to April 2022. The 
weekly data for the three types of assets were collected from the Wind database. For convenience, we refer to green assets and in
ternational precious metal assets as hedging assets. 

The returns of assets and climate change risks were obtained by logarithmic difference of price series as rt = 100 ∗ ln(Pt /Pt− 1). 
Table 1 provides the descriptive statistics for the return series. According to Table 1, all returns exhibited negative skewness and 
positive kurtosis, which indicates fat-tailed characteristics. The Jarque-Bera test results rejected the null hypothesis of normal dis
tribution, which shows that the returns did not obey the Gaussian process. The results of the ADF test and ARCH tests revealed that all 
returns were stationary and heteroscedastic. These statistical results support the use of the BEKK-GARCH model with Student t-dis
tribution. In addition, the Std.dev of green bonds was far lower than that of other assets, which indicates the low risk of green bonds and 
their excellent portfolio risk diversification performance. 

3. Empirical results 

3.1. The impact of climate risks on returns and volatility 

In this section, we first apply the BEKK-GARCH-t model to estimate the return and volatility spillover effects of the two types of 
climate change risks on brown assets and hedging assets (green assets and precious metals). The estimated results of the BEKK-GARCH 
models are reported in Table 3. Panels A, B, C and D show the estimated results of the BEKK-GARCH models for TRI-Brown assets, TRI- 

1 Notice of the General Office of the National Development and Reform Commission on the Key Work for the Launch of the National Carbon 
Emissions Trading Market in a Practical Manner NDRC Climate [2016] No. 57: "The first phase of the national carbon emissions trading market will 
cover key emission industries such as petrochemicals, chemicals, building materials, steel, non-ferrous metals, paper, electricity and, aviation." 
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Hedging assets, PRI-Brown assets, and PRI-Hedging assets, respectively. 
According to the estimated results, we report the following findings about the impact of the transition risk on the return and 

volatility of assets. First, according to the estimated results of the return equation in Panel A, the transition risk has a significant 
negative return spillover effect (βa

1) only on the three brown assets of PETR, BCHE, and THEP; that is, increased transition risk leads to 
the decline of the prices of these three types of assets, and vice versa. As shown in Panel C, the transition risk has a significant positive 
return spillover effect (βa

1) only on PALL; that is, increased transition risk causes the price of PALL to increase, and vice versa. These 
results show that, on the whole, the impact of transition risk on the price of brown assets and hedging assets is limited, and changes of 
transition risk lead to reverse changes in the prices of the two types of assets. Second, the estimated results of the volatility equation in 
Panel A show that the transition risk has a significant positive volatility spillover effect (b21) on PETR, BUMA, NONM, STEE, BCHE, and 
PAPE, which means that large fluctuations in the transition risk aggravate the volatility of these assets. The estimated results in Panel C 
show that the transition risk exhibits negative volatility spillovers (b21) only for LCAR and SILV assets but not for other hedging assets. 
The volatility spillover analysis shows that the impact of transition risk on the volatility of brown and hedging assets has clear reverse 
characteristics. The heterogeneity of the returns and the volatility of brown and hedging assets in the face of the transition risks mean 
that we can expect hedging assets to hedge climate transition risks. 

Panels B and D show the estimated results of the BEKK-GARCH models for physical climate risks and assets. First, Panel B indicates 
that the physical climate risk has obvious negative return spillovers (βa

1) for STEE, PAPE, and THES, which means that increased 
physical risk leads to price decline for these three brown assets. The estimation results in Panel D show the physical climate risk has 
significant positive return spillovers for all hedging assets except SUSI, GREB, SILV, and GOLD, which indicates that increased physical 
risk leads to price rise for most hedging assets. In addition, decreased physical risk leads to reverse price movements for brown and 
hedging assets. Second, according to the estimation results of the variance equation in Panel B, physical risks have a significant 
negative volatility spillover effect on brown assets, except for AIRP, THES, and THEP. According to Panel D, physical climate risks 
exhibit significant negative volatility spillovers for all hedging assets except GREB, SILV, and GOLD, that is, the volatility of most 
hedging assets is consistent with that of brown assets in relation to the impact of physical risks. This indicates that hedging physical 
climate risks with these hedging assets may not achieve the desired risk diversification effect. According to these results, the impacts of 
transition risk on brown and hedging assets are significantly heterogeneous. Whereas the impacts of physical risk on the prices of the 
two types of assets are heterogeneous, these impacts on the volatility of the two types of assets are homogeneous. Therefore, from this 
perspective, the performance of hedging assets in hedging transition risks may be better than their performance in hedging physical 
risks. 

3.2. Dynamics Correlation 

The static analysis considered only the overall linkages between climate risks and the two types of assets in the full sample period, 
while the time-varying microscopic linkages are not described in detail. However, understanding dynamic linkages is crucial for 

Fig. 2. Physical risk and transition risk indexes.  

Fig. 3. Probability density map of TRI at different stages.  
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Table 3 
Estimated results for the BEKK-GARCH models.  

Brown PETR BUMA NONM STEE BCHE AIRP PAPE THES THEP 

Panel A: TRI-Brown assets 
βa

1 − 0.741***(0.000) 1.491 (0.121) 1.014 (0.302) 0.644 (0.504) − 1.657* (0.086) 0.929 (0.325) 0.226 (0.818) − 1.320 (0.148) − 1.400* (0.051) 
b21 0.003*** (0.000) 0.002*** (0.001) 0.002*** (0.000) 0.002*** (0.081) 0.002*** (0.021) 0.001 (0.114) 0.002* (0.093) 0.001 (0.645) 0.001 (0.555) 
Panel B: PRI-Brown assets 
βa

1 0.924 (0.225) 1.199 (0.192) 1.619 (0.129) − 1.188* (0.086) 1.198 (0.160) 0.763 (0.312) − 1.970** (0.014) − 1.183** (0.018) 0.121 (0.855) 
b21 − 0.002* (0.055) − 0.002*** (0.000) − 0.002** (0.036) − 0.003* (0.071) 0.003*** (0.001) − 0.001 (0.616) 0.003*** (0.006) 0.0003 (0.802) 0.002 (0.283)  

Hedging RESI SUSI GOVI ESGI ENVP LCAR GREB PALL PLAT SILV GOLD 

Panel C: TRI-Hedging assets 
βa

1 1.354 (0.131) 0.853 (0.381) 0.990 (0.222) 1.183 (0.151) 0.607** (0.043) 0.988 (0.376) 0.042 
(0.136) 

2.280* (0.058) 1.454 (0.183) − 0.067 
(0.949) 

0.338 
(0.597) 

b21 − 0.001 (0.214) − 0.001 
(0.119) 

− 0.001 (0.571) − 0.001 
(0.6507) 

− 0.002 (0.125) − 0.002** 
(0.011) 

− 0.003 
(0.699) 

− 0.004 (0.132) 0.003 (0.103) − 0.002* 
(0.054) 

− 0.001 
(0.707) 

Panel D: PRI-Hedging assets 
βa

1 1.946** (0.010) 0.782 (0.350) 1.579** (0.019) 1.492** 
(0.028) 

0.901* (0.086) 1.326** (0.045) 0.062 
(0.287) 

2.358* (0.056) 3.115*** 
(0.000) 

1.082 (0.258) 0.768 
(0.169) 

b21 − 0.001*** 
(0.004) 

− 0.001** 
(0.019) 

− 0.001*** 
(0.007) 

− 0.001** 
(0.014) 

− 0.001*** 
(0.001) 

− 0.001*** 
(0.002) 

− 0.002 
(0.831) 

− 0.005*** 
(0.000) 

− 0.007*** 
(0.001) 

0.0001 
(0.213) 

0.0003 
(0.705) 

Note: ***, * *, and * indicate 1%, 5%, and 10% significance levels, respectively; p values are reported in parentheses. The first and second variables in all models are asset and climate risk respectively. 
Superscript a represents the selected asset. 

J. Li et al.                                                                                                                                                                                                                



International Review of Economics and Finance 94 (2024) 103426

9

investors to adjust their portfolios dynamically according to climate risks. Therefore, we estimated the dynamic correlation coefficient 
between climate change risks and the two types of assets base on the BEKK-GARCH model. Figs. 4 and 6 show the dynamic correlations 
between the two climate risks and brown assets, while Figs. 5 and 7 show the dynamic correlations between the two climate risks and 
hedging assets. Based on these four figures, we have the following findings. First, the dynamic correlations between climate change risk 
and brown assets were negative in most cases and positive in most cases with hedging assets. In other words, increased transition and 
physical risks lead to the decline of brown asset prices and the rise of hedging asset prices, which means that our chosen hedging assets 
can be used to hedge the risk of climate change. Second, according to the characteristics of the dynamic correlation, we can divide 
hedging assets into two categories. The first category is China’s green assets including RESI, SUSI, GOVI, ESGI, ENVP, and LCAR, while 
the second category includes GREB and international precious metal commodities. Although most of the dynamic correlations between 
the first type of hedging assets and the two climate risks were positive, several negative cases remained, while the dynamic correlations 
between the second type of hedging assets and the two climate risks were more clearly positive. This indicates that the second category 
of assets may outperform the first one in terms of hedging climate risks. Third, by comparing the dynamic correlations between the two 
types of assets and climate risks, we found that the trends of the correlations between the two types of assets and climate risks were the 
same in some periods, but the opposite in other periods. More specifically, in the period of low climate risk levels, the trend of the 
brown and hedging assets was the same, while in the period of high climate risk level, the trend was opposite. This means that when 
climate risk levels are high, the hedging assets we selected may bring high risk diversification returns. 

3.3. The impact of climate risks on the linkages between brown and hedging assets 

Correlation between assets have an important impact on risk diversification; thus we needed to clarify the impact of climate change 
risks on the correlation between brown assets and hedging assets when using hedging assets to hedge climate change risks. This section 
describes how we constructed the following two models according to Cepni et al. (2022) to measure the impact of climate risks on the 
correlation between brown and hedging assets. 

Correlationt =α + β1TRIt + β2D ∗ TRIt + εt (7)  

Correlationt =α + β1 PR It + β2D ∗ PR It + εt (8)  

when the risk index value (transition risk or climate risk) is greater than the 90% quantile, the value of dummy variable D is 1; 
otherwise it is 0. β1 and β2 in Equations (6) and (7) measure the impact of climate risks on the correlations at normal and extreme risk 
levels, respectively. Tables 3 and Table 4 report the estimated results of TRI and PRI on the correlations between brown assets and 
hedging assets respectively. To save space, we provide only the estimated results of β1 and β2.In Table 4 and Table 5, the elements at 
the intersection of each row and column intersection represents the estimated results of the correlations between the corresponding 
row and column assets. 

According to Tables 4 and 5, the findings were as follows: First, the impacts of physical and transition risks on the correlations 
between brown and hedging assets were similar. More specifically, the impacts of climate risks on the correlations between GREB and 

Fig. 4. Dynamic correlations between TRI and brown assets. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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brown assets were significantly positive at the normal risk level and significantly negative at the extreme risk level. However, the 
impacts of climate risks on the correlations between brown and hedging assets, including green assets, PALL, and PLAT, were exactly 
opposite to the impacts on GREB in both states. The impact of TRI and PRI on the correlations between brown assets and the two safe- 
haven assets, including gold and silver, was somewhat inconsistent. The impacts of TRI on the correlations between SILV and brown 
assets were similar to the impacts on PALL and PLAT, but the impacts on the correlations between GOLD and brown assets were mostly 
not obvious. The impacts of PRI on the correlations between brown assets and SILV and GOLD were similar to the impacts on GREB. 
Second, the impacts of TRI and PRI on the correlations between brown assets and the two kinds of hedging assets, including GREB and 
precious metals, were far lower than the impacts on the correlations between brown assets and other green assets. This is mainly 
because green bonds, rare metal commodities, and brown assets belong to different categories of assets, while green assets and brown 
assets (other than GREB) belong to Chinese equity assets. Therefore, climate risk changes lead to changes in many common factors in 
similar asset markets, which produce significant changes in correlations. Third, the effects of PRI on the correlations were significantly 

Fig. 5. Dynamic correlations between TRI and hedging assets.  

Fig. 6. Dynamic correlations between PRI and brown assets. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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stronger than those of TRI. This is mainly because PRI involves extreme weather and natural disasters caused by climate change, and 
the impact on the financial market is rapid and immediate. Meanwhile, TRI refers to the policy, cost, and market-operation risks 
associated with the transition of financial institutions in terms of the whole social economy to a low-carbon economy and zero 
emissions. Thus, the impact of TRI on financial markets is gradual, continuous, and long term. 

4. Risk management implications 

Given the negative impact of climate risks on brown assets, we will now discuss possible compensation strategies for this adverse 
effect. The previous analysis showed that climate risks are beneficial to green assets and precious metal assets; thus, we will use green 
assets and precious metal assets as hedging assets to explore their performance in hedging climate risk. More specifically, in this 
section, we construct a portfolio strategy to examine whether the selected hedging assets can effectively reduce the climate change risk 
exposure of brown assets. we construct a portfolio including brown assets and hedging assets to minimize portfolio risk based on 
Kroner and Ng (1998) during high climate risk period, determined by TRI (PRI) values above the 90th percentile. The optimal weight 
of the hedging assets in the portfolio is calculated according to the following formula: 

ωHedging,t =
hBrown,t − hHedging& Brown,t

hBrown,t − 2hHighcarbon Lowcarbon,t + hHedging,t
,with

ωHedging,t =

⎧
⎪⎪⎨

⎪⎪⎩

0 if ωHedging,t < 0

ωe com,t if 0 ≤ ωHedging,t ≤ 1

1 if ωHedging,t > 1

(9)  

where hBrown,t, hHedging,t , hHedging& Brown,t , and ωHedging,t represent the conditional variance of the brown asset, the conditional variance of 
the hedged asset, and the conditional covariance and weight of the hedged asset in the portfolio at time t. Therefore, the weight of 
brown assets in the portfolio is 1 − ωHedging,t . Then, we calculate the variance of the portfolio and measure the risk reduction perfor
mance of the hedging assets using risk reduction effectiveness (RRE). 

RRE=
Risk Brown asset − Risk Portfolio

Risk Brown asset
(10)  

where Risk Portfolio and Risk Brown asset are the variance of the portfolio and hedging assets. The RRE level measures the RRE 
quality of the corresponding hedging assets. The hedging results for transition risk exposure and physical risk exposure are shown in 
Figs. 8 and 9 respectively. 

According to Figs. 8 and 9, the performance of hedging assets in terms of physical climate risk and transition climate risk is similar. 
The selected hedging assets can reduce the climate risk exposure of brown assets to some extent, but the performance of different types 
of hedging assets is heterogeneous. First, in terms of absolute RRE, China’s green stock assets and PALL have relatively low risk 
reduction efficiency, while GREB, PLAT, SILV, and GOLD have relatively high risk reduction efficiency. Among them, GREB has the 

Fig. 7. Dynamic correlations between PRI and hedging assets.  
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Table 4 
Regression results of TRI on the correlations.    

RESI SUSI GOVI ESGI ENVP LCAR GREB PALL PLAT SILV GOLD 

PETR  β1 1.043*** 
(0.000) 

1.281*** 
(0.000) 

1.258*** 
(0.000) 

1.265*** 
(0.000) 

1.383*** 
(0.000) 

1.258*** 
(0.000) 

− 0.368*** 
(0.000) 

0.284*** 
(0.000) 

0.223*** 
(0.000) 

0.066*** 
(0.001) 

− 0.008 
(0.653) 

β2 − 0.366*** 
(0.000) 

− 0.574*** 
(0.000) 

− 0.455*** 
(0.000) 

− 0.469*** 
(0.000) 

− 0.636*** 
(0.000) 

− 0.601*** 
(0.000) 

0.121*** 
(0.000) 

− 0.170*** 
(0.000) 

− 0.108*** 
(0.000) 

− 0.091*** 
(0.003) 

− 0.065** 
(0.020) 

BUMA  β1 1.199*** 
(0.000) 

1.279*** 
(0.000) 

1.404*** 
(0.000) 

1.446*** 
(0.000) 

1.434*** 
(0.000) 

1.273*** 
(0.000) 

− 0.355*** 
(0.000) 

0.277*** 
(0.000) 

0.116*** 
(0.000) 

0.062*** 
(0.002) 

0.041** 
(0.043) 

β2 − 0.422*** 
(0.000) 

− 0.567*** 
(0.000) 

− 0.503*** 
(0.000) 

− 0.527*** 
(0.000) 

− 0.631*** 
(0.000) 

− 0.607*** 
(0.000) 

0.126*** 
(0.001) 

− 0.124*** 
(0.000) 

− 0.051*** 
(0.043) 

− 0.057* 
(0.068) 

− 0.046 
(0.144) 

NONM  β1 0.949*** 
(0.000) 

1.298*** 
(0.000) 

1.181*** 
(0.000) 

1.272*** 
(0.000) 

1.440*** 
(0.000) 

1.350*** 
(0.000) 

− 0.307*** 
(0.000) 

0.297*** 
(0.000) 

0.329*** 
(0.000) 

0.221*** 
(0.000) 

0.221*** 
(0.000) 

β2 − 0.337*** 
(0.000) 

− 0.519*** 
(0.000) 

− 0.431*** 
(0.000) 

− 0.526*** 
(0.000) 

− 0.579*** 
(0.000) 

− 0.569*** 
(0.000) 

0.120*** 
(0.003) 

− 0.151*** 
(0.000) 

− 0.136*** 
(0.000) 

− 0.097*** 
(0.000) 

− 0.097*** 
(0.000) 

STEE  β1 0.995*** 
(0.000) 

1.090*** 
(0.000) 

1.163*** 
(0.000) 

1.214*** 
(0.000) 

1.145*** 
(0.000) 

0.986*** 
(0.000) 

− 0.342*** 
(0.000) 

0.164*** 
(0.000) 

0.249*** 
(0.000) 

0.075*** 
(0.000) 

− 0.039** 
(0.0282) 

β2 − 0.399*** 
(0.000) 

− 0.490*** 
(0.000) 

− 0.458*** 
(0.000) 

− 0.481*** 
(0.000) 

− 0.481*** 
(0.000) 

− 0.488*** 
(0.000) 

0.125*** 
(0.001) 

− 0.071*** 
(0.005) 

− 0.160*** 
(0.000) 

− 0.078*** 
(0.004) 

− 0.054* 
(0.052) 

BCHE  β1 0.979*** 
(0.000) 

1.459*** 
(0.000) 

1.226*** 
(0.000) 

1.294*** 
(0.000) 

1.629*** 
(0.000) 

1.447*** 
(0.000) 

− 0.301*** 
(0.000) 

0.174*** 
(0.000) 

0.089*** 
(0.000) 

0.056*** 
(0.003) 

− 0.008 
(0.590) 

β2 − 0.376*** 
(0.000) 

− 0.603*** 
(0.000) 

− 0.474*** 
(0.000) 

− 0.511*** 
(0.000) 

− 0.685*** 
(0.000) 

− 0.635*** 
(0.000) 

0.090*** 
(0.016) 

− 0.124*** 
(0.000) 

− 0.051** 
(0.025) 

− 0.039 
(0.188) 

− 0.019 
(0.456) 

AIRP  β1 1.230*** 
(0.000) 

0.960*** 
(0.000) 

1.294*** 
(0.000) 

1.322*** 
(0.000) 

0.918*** 
(0.000) 

0.958*** 
(0.000) 

− 0.484*** 
(0.000) 

0.055*** 
(0.002) 

0.131*** 
(0.000) 

0.039* (0.076) − 0.037** 
(0.024) 

β2 − 0.522*** 
(0.000) 

− 0.519*** 
(0.000) 

− 0.561*** 
(0.000) 

− 0.608*** 
(0.000) 

− 0.472*** 
(0.000) 

− 0.526*** 
(0.000) 

0.152*** 
(0.000) 

− 0.056** 
(0.044) 

− 0.053* 
(0.060) 

− 0.015 
(0.655) 

− 0.016 
(0.526) 

PAPE  β1 0.899*** 
(0.000) 

1.214*** 
(0.000) 

1.121*** 
(0.000) 

1.119*** 
(0.000) 

1.352*** 
(0.000) 

1.206*** 
(0.000) 

− 0.265*** 
(0.000) 

0.204*** 
(0.000) 

0.164*** 
(0.000) 

0.016 (0.335) − 0.013 
(0.402) 

β2 − 0.261*** 
(0.000) 

− 0.577*** 
(0.000) 

− 0.364*** 
(0.000) 

− 0.384*** 
(0.000) 

− 0.659*** 
(0.000) 

− 0.622*** 
(0.000) 

0.101*** 
(0.006) 

− 0.099*** 
(0.001) 

− 0.040*** 
(0.110) 

− 0.037 
(0.170) 

− 0.038 
(0.128) 

THES  β1 0.784*** 
(0.000) 

1.142*** 
(0.000) 

1.013*** 
(0.000) 

1.007*** 
(0.000) 

1.278*** 
(0.000) 

1.103*** 
(0.000) 

− 0.260*** 
(0.000) 

0.103*** 
(0.000) 

0.005 (0.712) − 0.032** 
(0.030) 

− 0.015 
(0.249) 

β2 − 0.31*** 
(0.000) 

− 0.554*** 
(0.000) 

− 0.416*** 
(0.000) 

− 0.434*** 
(0.000) 

− 0.567*** 
(0.000) 

− 0.581*** 
(0.000) 

0.070** 
(0.049) 

− 0.100*** 
(0.003) 

− 0.029 
(0.204) 

− 0.050** 
(0.037) 

− 0.031 
(0.148) 

THEP  β1 1.083*** 
(0.000) 

1.237*** 
(0.000) 

1.290*** 
(0.000) 

1.330*** 
(0.000) 

1.347*** 
(0.000) 

1.150*** 
(0.000) 

− 0.245*** 
(0.000) 

0.393*** 
(0.000) 

0.239*** 
(0.000) 

0.061*** 
(0.006) 

0.006 (0.733) 

β2 − 0.432*** 
(0.000) 

− 0.553*** 
(0.000) 

− 0.511*** 
(0.000) 

− 0.534*** 
(0.000) 

− 0.550*** 
(0.000) 

− 0.564*** 
(0.000) 

0.110** 
(0.011) 

− 0.199*** 
(0.000) 

− 0.137*** 
(0.000) 

− 0.088** 
(0.013) 

− 0.048 
(0.112) 

Note: ***, * *, and * indicate 1%, 5% and 10% significance levels, respectively; p values are reported in parentheses. 
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Table 5 
Regression results of PRI on the correlations.    

RESI SUSI GOVI ESGI ENVP LCAR GREB PALL PLAT SILV GOLD 

PETR  β1 2.366*** 
(0.000) 

2.839*** 
(0.000) 

2.844*** 
(0.000) 

2.846*** 
(0.000) 

3.037*** 
(0.000) 

2.749*** 
(0.000) 

− 0.782*** 
(0.000) 

0.556*** 
(0.000) 

0.504*** 
(0.000) 

0.083* (0.075) − 0.082* 
(0.055) 

β2 − 1.398*** 
(0.000) 

− 1.773*** 
(0.000) 

− 1.686*** 
(0.000) 

− 1.684*** 
(0.000) 

− 1.850*** 
(0.000) 

− 1.697*** 
(0.000) 

0.369*** 
(0.000) 

− 0.276*** 
(0.000) 

− 0.324*** 
(0.000) 

0.009 (0.877) 0.103* (0.057) 

BUMA  β1 2.702*** 
(0.000) 

2.836*** 
(0.000) 

3.158*** 
(0.000) 

3.254*** 
(0.000) 

3.175*** 
(0.000) 

2.796*** 
(0.000) 

− 0.759*** 
(0.000) 

0.560*** 
(0.000) 

0.284*** 
(0.000) 

0.086* (0.069) 0.049 (0.305) 

β2 − 1.602*** 
(0.000) 

− 1.756*** 
(0.000) 

− 1.874*** 
(0.000) 

− 1.942*** 
(0.000) 

− 1.937*** 
(0.000) 

− 1.740*** 
(0.000) 

0.396*** 
(0.000) 

− 0.255*** 
(0.000) 

− 0.204*** 
(0.000) 

0.025 (0.672) 0.031 (0.605) 

NONM  β1 2.152*** 
(0.000) 

2.901*** 
(0.000) 

2.668*** 
(0.000) 

2.833*** 
(0.000) 

3.211*** 
(0.000) 

2.994*** 
(0.000) 

− 0.639*** 
(0.000) 

0.595*** 
(0.000) 

0.705*** 
(0.000) 

0.548*** 
(0.000) 

0.434*** 
(0.000) 

β2 − 1.283*** 
(0.000) 

− 1.764*** 
(0.000) 

− 1.593*** 
(0.000) 

− 1.728*** 
(0.000) 

− 1.932*** 
(0.000) 

− 1.809*** 
(0.000) 

0.325*** 
(0.000) 

− 0.269*** 
(0.000) 

− 0.366*** 
(0.000) 

− 0.244*** 
(0.000) 

− 0.155*** 
(0.001) 

STEE  β1 2.234*** 
(0.000) 

2.389*** 
(0.000) 

2.617*** 
(0.000) 

2.730*** 
(0.000) 

2.529*** 
(0.000) 

2.119*** 
(0.000) 

− 0.710*** 
(0.000) 

0.303*** 
(0.000) 

0.455*** 
(0.000) 

0.084** 
(0.044) 

− 0.186*** 
(0.000) 

β2 − 1.375*** 
(0.000) 

− 1.458*** 
(0.000) 

− 1.610*** 
(0.000) 

− 1.680*** 
(0.000) 

− 1.516*** 
(0.000) 

− 1.268*** 
(0.000) 

0.349*** 
(0.000) 

− 0.075 
(0.120) 

− 0.191*** 
(0.001) 

0.027 (0.609) 0.184*** 
(0.001) 

BCHE  β1 2.190*** 
(0.000) 

3.263*** 
(0.000) 

2.735*** 
(0.000) 

2.887*** 
(0.000) 

3.629*** 
(0.000) 

3.209*** 
(0.000) 

− 0.643*** 
(0.000) 

0.304*** 
(0.000) 

0.193*** 
(0.000) 

0.072 (0.110) − 0.072* 
(0.065) 

β2 − 1.326*** 
(0.000) 

− 2.017*** 
(0.000) 

− 1.642*** 
(0.000) 

− 1.745*** 
(0.000) 

− 2.218*** 
(0.000) 

− 1.978*** 
(0.000) 

0.307*** 
(0.000) 

− 0.107* 
(0.068) 

− 0.113** 
(0.010) 

0.054 (0.334) 0.130*** 
(0.009) 

AIRP  β1 2.724*** 
(0.000) 

2.089*** 
(0.000) 

2.864*** 
(0.000) 

2.906*** 
(0.000) 

2.013*** 
(0.000) 

2.090*** 
(0.000) 

− 1.010*** 
(0.000) 

0.083** 
(0.048) 

0.311*** 
(0.000) 

0.086 (0.106) − 0.094** 
(0.019) 

β2 − 1.633*** 
(0.000) 

− 1.356*** 
(0.000) 

− 1.741*** 
(0.000) 

− 1.799*** 
(0.000) 

− 1.295*** 
(0.000) 

− 1.359*** 
(0.000) 

0.463*** 
(0.000) 

− 0.012 
(0.827) 

− 0.206*** 
(0.000) 

− 0.053 
(0.429) 

0.028 (0.578) 

PAPE  β1 2.052*** 
(0.000) 

2.663*** 
(0.000) 

2.548*** 
(0.000) 

2.523*** 
(0.000) 

2.961*** 
(0.000) 

2.614*** 
(0.000) 

− 0.568*** 
(0.000) 

0.406*** 
(0.000) 

0.359*** 
(0.000) 

− 0.022 
(0.588) 

− 0.080** 
(0.034) 

β2 − 1.176*** 
(0.000) 

− 1.634*** 
(0.000) 

− 1.491*** 
(0.000) 

− 1.463*** 
(0.000) 

− 1.817*** 
(0.000) 

− 1.620*** 
(0.000) 

0.314*** 
(0.000) 

− 0.183*** 
(0.001) 

− 0.145*** 
(0.002) 

0.103** 
(0.047) 

0.109** 
(0.022) 

THES  β1 1.713*** 
(0.000) 

2.507*** 
(0.000) 

2.231*** 
(0.000) 

2.205*** 
(0.000) 

2.839*** 
(0.000) 

2.379*** 
(0.000) 

− 0.541*** 
(0.000) 

0.142*** 
(0.005) 

− 0.026 
(0.445) 

− 0.148*** 
(0.000) 

− 0.093*** 
(0.005) 

β2 − 0.953*** 
(0.000) 

− 1.591*** 
(0.000) 

− 1.295*** 
(0.000) 

− 1.293*** 
(0.000) 

− 1.787*** 
(0.000) 

− 1.497*** 
(0.000) 

0.235*** 
(0.001) 

− 0.064 
(0.318) 

0.040 (0.352) 0.150*** 
(0.001) 

0.110*** 
(0.008) 

THEP  β1 2.411*** 
(0.000) 

2.735*** 
(0.000) 

2.882*** 
(0.000) 

2.962*** 
(0.000) 

3.006*** 
(0.000) 

2.503*** 
(0.000) 

− 0.444*** 
(0.000) 

0.808*** 
(0.000) 

0.483*** 
(0.000) 

0.087 (0.101) − 0.028 
(0.537) 

β2 − 1.399*** 
(0.000) 

− 1.661*** 
(0.000) 

− 1.695*** 
(0.000) 

− 1.746*** 
(0.000) 

− 1.808*** 
(0.000) 

− 1.513*** 
(0.000) 

0.125 (0.131) − 0.451*** 
(0.000) 

− 0.255*** 
(0.000) 

− 0.029 
(0.664) 

0.039 (0.501) 

Note: ***, * *, and * indicate 1%, 5% and 10% significance levels, respectively; p values are reported in parentheses. 
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highest risk dispersion efficiency, followed by GOLD. This is because brown assets and green equity assets, which belong to China’s 
equity assets, share a high level of common climate risk factors. Brown assets, GREB, and international precious metal assets belong to 
different types of assets or are assets in different regions. Asset prices and risk have different response mechanisms in relation to 
climate risks, which results in low levels of common climate risk factors. Second, in terms of weight or hedging cost, GREB and GOLD 
exhibited the highest value, followed by green equity assets and finally the three precious metal commodities (PALL, PLAT, and SILV). 
Third, in terms of unit risk hedging efficiency (measured by RRE/ ω), the climate risk reduction efficiency of GREB and precious metal 
commodities is approximately 1, while that of the green equity assets is approximately 0.5. This confirms that GREB and precious metal 
commodities outperform China’s green equity assets in hedging climate change risks. Finally, the performance of the hedging assets in 
hedging physical risks is slightly better compared to hedging transition risks. This is mainly because the impact of physical risk on the 
financial market is rapid and undifferentiated, which causes the risks associated with brown assets, green assets, and precious metal 
assets to rise simultaneously in the short term. This means that brown assets and hedging assets share a high level of common risk 
factors, which translates to a relatively low RRE. In addition, although GREB and GOLD are better than other assets in terms of risk 
diversification efficiency, investors need to spend large amounts of money to hedge the risk of brown assets (i.e., they need to invest a 
large proportion of funds in hedging assets), while PLAT and SILV have obvious advantages in terms of cost savings. Therefore, in
vestors need to comprehensively balance the effect of risk diversification and the cost of risk hedging when adopting hedging assets to 
reduce climate risks. 

5. Conclusions 

Based on text analysis, this study constructed indicators of transition risk and physical risk in China. We quantitatively analyzed the 
impact of climate risks on the China’s brown assets and potential hedging assets and examined the linkages between the two types of 
assets from both dynamic and static perspectives. Finally, we investigated the performance of China’s green assets and international 
precious metal commodities in hedging climate risks. 

The study yielded several significant results. First, the static analysis results showed that climate risks have significant return or 
volatility spillover effects on brown and hedging assets. Generally speaking, transition climate risk has obvious reverse return or 
volatility spillover effects on brown and hedging assets. Physical climate risk has reverse return spillover effects and similar volatility 
spillover effect on the two types of hedging assets. Second, there are clear dynamic linkages between climate risks and brown and 
hedging assets. Brown assets have a negative linkage with climate risks, while hedging assets have a positive linkage with climate risks. 
Climate risks have a significant impact on the correlations between brown and green assets, while the impact on the correlations 
between brown assets and international precious metal assets is relatively weak. Moreover, under the conditions of different climate 
risk levels, the impacts of climate risk on the correlations between brown and hedging assets exhibit clear heterogeneity character
istics. Finally, we found that green bonds, silver, and gold outperformed other hedging assets in hedging China’s climate change risks. 

Our findings have important implications for China’s market participants and policy makers. For market participants, climate 
change risks not only affect the price and risk of high-carbon brown assets but also affect the price and risk of low-carbon green assets. 
In other words, climate risks have become a crucial and non-negligible factor affecting asset prices and risks, which means that in
vestors should include climate risks in their investment analysis lists when making investment decisions. In addition, the climate risk 
exposure of different carbon footprint assets is heterogeneous; thus, investors should include both high-carbon and low-carbon assets 
in their portfolios to cope with climate change risks. For Chinese policy makers, climate risks have become a fundamental factor 

Fig. 8. Transition risk hedging performance 
(Note: The upper figure draws the weight ω; the lower figure draws the RRE). 
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affecting the stability of China’s financial market. Therefore, Chinese policy makers should accelerate the process of decarbonization to 
weaken the impact of climate change risk on the financial system as soon as possible. In addition, because the operation and market 
performance levels of high-carbon-emission companies are vulnerable to the negative impact of climate risks, the government should 
encourage high-carbon companies to actively use hedging tools to hedge their exposure to climate risks. 
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